Annotated Black Beauty List
Developed by Jelonia T Rumph

Abstract

The annotated black beauty list is compiled of about 126 references that investigate the link between known and emerging environmental toxicants and human health risks. This list contains sources that range from 1989, when environmental exposures became a hot topic following the initiation of the clean air and water act, to 2021 when exposures via personal care products began to gain attention. The studies within this list are categorized by health conditions, including diabetes, puberty, endometriosis, fertility, menopause, maternal health, obesity, cancer, preterm birth, polycystic ovarian syndrome, preterm birth, fibroids, and allergies. Within each group, the APA style source is listed, and directly under the source is a short synopsis about the goal and results of the study. Out of the 126 papers 26 investigate diabetes, 9 investigate endocrine dysfunction, 2 investigate neurotoxicity, 8 investigate puberty, 2 investigate reproduction, 4 investigate endometriosis, 11 investigate fertility, 4 investigate menopause, 43 investigate maternal health, 9 investigate obesity, 11 investigate cancer, 1 investigates PCOS, 7 investigate preterm birth, 5 investigate fibroids and 2 investigate allergies; with some overlapping between categories.

Tier 1: Prohibited Chemicals

Diabetes (23):

Gribble et al conducted a study to evaluate the association between urinary arsenic and the prevalence of diabetes, glycated hemoglobin, and insulin resistance. The group reported that high levels of urinary arsenic were associated with poor diabetes control [3].
Hou et al conducted a cross-sectional study using pregnant Chinese women to investigate the link between exposure to endocrine-disrupting chemicals and gestational diabetes. They found that exposure to 2-tert-octylphenol was associated with a higher risk of gestational diabetes, but exposure to nonylphenol was associated with a lower risk [4].

Jia et al investigated the association between endocrine-disrupting heavy metals in maternal hair and the risk of gestational diabetes. The group reported that high maternal levels of tin and mercury were associated with the development of gestational diabetes [5].

Liu et al conducted a prospective nested case-control study in China to determine if there is an association between exposure to perfluoroalkyl acids and gestational diabetes mellitus. The group found that exposure to short-chain perfluoroalkyl carboxylates was significantly associated with gestational diabetes mellitus. Exposure to these chemicals was also associated with higher postprandial glucose levels [6].

Liu et al conducted a prospective study to examine the association between cadmium body burden in early pregnancy and the risk of gestational diabetes mellitus in Chinese women. The group reported an association between urinary cadmium levels and an increased risk of gestational diabetes mellitus [7].

Nam et al aimed to determine the relationship between diabetes and urinary phthalate metabolites using data from the Korean National Environmental Health Survey cycle 3. The group reported that higher urinary phthalate concentration was associated with a higher prevalence of diabetes [8].

Peng et al conducted a retrospective case-control nested study within a cohort of pregnant women to investigate the association between heavy metal exposure and gestational diabetes. The group reported that higher concentrations of arsenic, mercury, chromium, and cadmium were associated with gestational diabetes in a dose-dependent manner [9].

Rahman et al prospectively evaluated the association of POPs measured in early pregnancy with gestational diabetes risk. The group reported that environmentally relevant levels of heavily chlorinated PCBs and some PFAs and PBDEs were positively associated with gestational diabetes [10].

Sharpio et al conducted a study using data from the maternal-infant research on environmental chemicals cohort to determine the associations between plasticizers/metal and impaired glucose tolerance/gestational diabetes. Their findings supported the role of maternal arsenic exposure in the development of gestational diabetes [11].

Soomro et al investigated the role of heavy metal exposure and the development of gestational diabetes mellitus and impaired glucose tolerance. The group reported that cadmium exposure was statistically relevant to having a diagnosis of gestational diabetes mellitus or glucose intolerance. Additionally, exposure to lead was associated with similar outcomes [12].

Sun et al examined the association between PFAS exposures and the incidence of type 2 diabetes using the Nurses' Health Study II. The group reported that background exposures to PFASs in the late 1990s were associated with a higher risk of type 2 diabetes [13].

Wang et al conducted a longitudinal cohort study to assess the association between exposure to metal mixtures and insulin resistance/beta-cell function. The group reported that high levels of urinary zinc were associated with insulin resistance and lower beta-cell activity [14].

Wang et al conducted a study to observe the association between multiple metal concentrations and gestational diabetes using 776 women with or without gestational diabetes. The group reported that gestational diabetes was associated with increased blood levels of arsenic and mercury [15].

Wang et al conducted a study that aimed to expose the associations between exposure to perfluoroalkyl substances and glucose homeostasis. The group reported that exposure to PFAS may influence glucose homeostasis in Chinese pregnant women [16].

Wang et al aimed to investigate the association between urinary nickel, arsenic, cadmium, antimony, cobalt, and vanadium in early pregnancy and the risk of diabetes. The group reported that increasing concentrations of nickel (individually or in a mixture of chemicals) in early pregnancy increased the risk of gestational diabetes [17].

Xia et al used a population-based birth cohort to examine the association between arsenic exposure and gestational diabetes. The group reported that the incidence of gestational diabetes gradually increased with increasing quartiles of arsenic levels during the first trimester of pregnancy [18].

Xie et al aimed to explore if triclocarban or triclosan exposure was associated with an increased risk of impaired glucose tolerance and type 2 diabetes using data from the U.S. National Health and Nutrition Examination Survey. The group reported that triclocarban exposure may increase the risk of type 2 diabetes in women [19].

Xing et al measured the urinary cadmium concentration of pregnant Chinese women to investigate whether cadmium exposure during pregnancy was associated with gestational diabetes mellitus. The group reported that a 3-fold increase in cadmium levels was associated with an increased risk of gestational diabetes. Risk factors such as obesity or being overweight further increased the risk of gestational diabetes associated with exposure to cadmium [20].

Xu et al conducted a nested case-control study to investigate the relationship between gestational diabetes and exposure to poly-fluoroalkyl substances and their short-chain alternatives among Chinese women. The group found that high levels of perfluorobutane sulfonic acid and perfluorododecanoic acid were found in the serum of pregnant women with gestational diabetes [21].

Zhang et al conducted a prospective cohort study using pregnant women to assess the relationship between trace element exposure, the gut microbiome, and gestational diabetes mellitus. They reported that there was no association between trace metals and the development of diabetes. However, exposure to trace elements altered the gut microbiome and this change was associated with the development of diabetes [22].

Zhang et al aimed to examine preconception serum concentrations of PFOA and PFCs in relation to gestational diabetes. The group reported that higher environmentally relevant concentrations of PFOA were significantly associated with an increased risk of gestational diabetes. [23].
Endocrine (8):

Charles et al aimed to observe the oestrogenic effects of Benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) on MCF-7, breast cancer cells. The group reported that these chemicals displaced [(3)H]oestradiol from recombinant human oestrogen receptors ERalpha and ERbeta, and from cytosolic ER of MCF7 cells. These chemicals also induced pS2 gene expression and proliferation in these cells. Suggesting that these chemicals which are commonly found in cosmetics have cancerous effects [24].

Hashimoto et al aimed to observe the estrogenic activities of plasticizers used in tissue conditioners by assessing their effect using in vitro tests. The group reported that n-Butyl benzyl phthalate, dibutyl phthalate, n-butylic acid n-butylic glycolate, di-2-ethylhexyl phthalate and benzyl salicylate increased the proliferation of MCF-7, breast cancer cells. Additionally, Coe comfort (CC), Tissue Conditioner (TC), Hydro Cast (HC) and Denture Soft (DS) II increased proliferation of MCF-7 cells; suggesting that 4 commercially used tissue conditioners showed estrogenic activity [25].

Jobling et al conducted a random screening of man-made chemicals present in liquid effluents of sewage to determine their effect of estradiol receptor activity. The group reported that half of these chemicals inhibited the binding of 17 beta-estradiol to the fish estrogen receptor. The group suggested that environmental estrogen exposure may play a role in the development of several human diseases including breast and testicular cancers [26].

Kunz et al evaluated if in vitro systems were good predictors for estrogenic activity in fish by testing 23 UV filters and 1 UV filter metabolite on the estrogen receptor of rainbow trout. Chemicals such as BP1 and BP2 exhibited full dose response curves, but chemicals such as 3BC did not. The group reported that estrogenic activities of UV filters can be studies using fish both in vivo and in vitro [27].

Kunz et al investigated the effects of UV filters on hormonal activities in human receptors and predict the effects that these chemicals have on hormonal activity in fish, which are exposed because these chemicals are found in water. The group reported estrogenic activities of UV filters in fish using in vitro and in vivo analyses [28].

Schlumpf et al examined the effects of 6 frequently used UVA and UVB screens for estrogenicity in vivo and in vitro. The group reported that Bp-3, HMS, 4-MBC, OMC and OC-PABA increased cell proliferation in MCF-7 breast cancer cells. These chemicals also led to the induction of pS2 in these cells. When Long-Evans rats were exposed to these chemicals they found that uterine weight increased with increasing concentrations of exposure to 4-MBC, OMC, and Bp-3. Additionally, dermal application of 4-MBC to immature hairless rats was also associated with increased uterine weight [29].

Singh et al examined the effects of two plasticizers, diethyl and di-2-ethylhexyl on fertility and dominant lethal mutations in mice. The group reported that exposure to these chemicals reduced the incidence of pregnancy and increased the number of early fetal deaths in mice. These effects were elicited by genetic and reproductive effects following exposure to these pesticides [30].

Zhang et al tested the estrogenicity of phenyl salicylate (PhS), benzyl salicylate (BzS), phenethyl salicylate (PES), ethyl salicylate (ES) and methyl salicylate (MS), types of salicylate esters, using an invitro human estrogen receptor alpha coactivator recruiting assay and in vivo immature rodent uerotrophic bioassays. The group reported that exposure to BzS and PES increased uterine weight in mice. They also reported that BzS exhibited very strong estrogenic activity when compared to BPA, a known estrogenic compound [31].

Neurotoxic Outcomes (2):

Brown-Woodman et al studied the impact of aromatic hydrocarbons on embryonic development using rats. The group found that toluene, benzene, and xylene all have embryotoxic effects on the developing rat embryo in a dose dependent manner. However, there was no synergistic effect seen when rats were exposed to a mixture of these compounds [32].
https://doi.org/10.1016/0892-0362(94)00093-s

Hass et al. investigated the effects of prenatal exposure to xylene on postnatal development. The group reported that maternal exposure to xylene prompted delayed ontogeny, lower brain weight and impaired performance in offspring [33].

Puberty (8):

https://doi.org/10.1016/j.envres.2019.108630

Ashrap et al. aimed to investigate measures of in utero and peripubertal metal exposure in relation to reproductive hormone levels and sexual maturation among girls from the early life exposure in Mexico to environmental toxicants cohorts. The group reported that female reproductive development may be vulnerable to the effects of metal exposure including slower progression of breast development and altered testosterone levels [34].

Binder et al. conducted a longitudinal cohort study to investigate the relationship between chemical biomarkers associated with the age of menarche among Chilean girls. The group reported that an increased concentration of the di(2-Ethylhexyl) phthalate biomarker was associated with later menarche. However, increased concentration of 2,5-dichlophenol and benzophenone-3 was associated with early menarche [35].

Brown-Woodman et al. studied the impact of aromatic hydrocarbons on embryonic development using rats. The group found that toluene, benzene, and xylene all have embryotoxic effects on the developing rat embryo in a dose dependent manner. However, there was no synergistic effect seen when rats were exposed to a mixture of these compounds [32].

Chen et al. analyzed the National Health and Nutrition Examination Survey to observe associations between serum PBDE levels and age at menarche. The group reported that the median total serum PBDE concentration was 44.7ng/g. Higher levels of PBDE were associated with slightly earlier ages at menarche [36].

Harley et al analyzed the data from the Center for Health Assessment of Mothers and Children of Salinas longitudinal cohort. They used members of this cohort to determine the relationship between exposure to phthalates and the onset of puberty. The group reported that prenatal exposure to monoethyl phthalate was associated with the early onset of pubic hair development in girls. In boys, prenatal exposure to propyl paraben was associated with earlier genital development [37].

Jurewicz et al discussed the relationship between exposure to phthalates and human health concerns in a literature review. The group highlighted multiple negative effects that phthalate exposure has on human health. This includes but is not limited to impaired sperm quality, gestational age, head circumference, thyroid function, gynecomastia, and puberty [38].

Schlumpf et al used long Evans rats to observe the developmental toxicity of 4-MBC, a UV filter. The group reported that exposure to this chemical was associated with weight gain in pregnant rats, increased postnatal thymic weight, and delayed male puberty—associated with alterations in the weight of reproductive organs as an adult [39].

Zhu et al investigated the effect of xylene exposure on Leydig cell development in rats at the age of puberty. The group reported that exposure to xylene downregulated the expression of relevant genes and proteins. This chemical also reduced Leydig cell size and cytoplasm size following exposure [40].

Reproductive (2):

Brown-Woodman et al studied the impact of aromatic hydrocarbons on embryonic development using rats. The group found that toluene, benzene, and xylene all have embryotoxic effects on the developing rat embryo in a dose dependent manner. However, there was no synergistic effect seen when rats were exposed to a mixture of these compounds [32].

Zhu et al investigated the effect of xylene exposure on Leydig cell development in rats at the age of puberty. The group reported that exposure to xylene downregulated the expression of relevant genes and proteins. This chemical also reduced Leydig cell size and cytoplasm size following exposure [40].

Endometriosis (4):

Jackson et al investigated the association between heavy metals and the risk of endometriosis and uterine myomas via a cross-sectional study using data from the National Health and Nutrition Examination Survey. The group reported that a dose-dependent response was associated with exposure to cadmium and the observation of endometriosis [41].

Kunisue et al aimed to determine the concentrations of 5 benzophenones in women residing in Utah and California. The group reported an association between the diagnosis of endometriosis and increasing urinary concentrations of benzophenone derivatives. Overall, the group speculated that exposure to elevated levels of 2,4,OH-BP was associated with endometriosis [42].

Louis et al examined the possible role of PFCs in the incidence of endometriosis. The group reported that serum PFOA was associated with endometriosis. Additionally, exposure to PFSA was associated with increased odds of moderate/severe endometriosis [43].

Peinado et al conducted a case-control study to examine the relationship between urinary concentrations of benzophenones and parabens in persons who use personal care products and how this relationship impacts the risk of endometriosis. The group reported that the frequency of personal care product use was significantly associated with urinary concentrations of benzophenones and parabens. Additionally, urinary concentrations of these chemicals were associated with an increased risk of endometriosis [44].

Fertility (11):

Alviggi et al performed an observational prospective pilot study to evaluate if levels of benzene in follicular fluid were correlated with response to controlled ovarian stimulation. The group reported that ovarian response to endogenous and exogenous gonadotrophins was influenced by intra-follicular benzene levels [45].

Arya et al conducted a cross-sectional study to investigate the relationship between exposure to endocrine-disrupting chemicals and infertility among women in the United States using the National Health and Nutrition Examination Surveys. The group found that self-reported infertility was associated with increased concentrations of mixtures of benzophenones as well as triclosan and butyl parabens [46].

A review discussing the association between exposure to persistent environmental chemicals and reproductive outcomes. The review also discusses ways to improve studies that investigate the impact that environmental exposures have on women’s reproductive health outcomes [47].

This review discussed the current understanding that exposure to endocrine-disrupting chemicals has on reproductive health. Specifically, this review discussed the relationship between environmental exposures and male/female reproductivity during the periconception period and how this impacts sex/embryo characteristics and pregnancy outcomes [48].

Hua et al performed a prospective cohort study to investigate whether high urinary triclosan concentration is adversely associated with early reproductive outcomes in women undergoing in vitro fertilization-embryo transfer. The group reported that high levels of urinary triclosan were associated with a significant decrease in top-quality embryo formation and implantation rate [49].

Lei et al conducted a cross-sectional study to investigate the association between blood lead, cadmium, and arsenic in infertile women. The group reported that blood levels of lead, arsenic, and cadmium were significantly higher in infertile women, but exercising may reduce the accumulation of lead [50].
Smith et al analyzed the urine and ovarian reserve of a cohort of women seeking fertility treatment to determine if paraben exposure is associated with characteristics of fertility. The group found that exposure to propylparaben may be associated with a diminished ovarian reserve [51].

Radwan et al examined the association between urinary levels of triclosan and in vitro reproductive outcomes. The group reported that urinary triclosan concentrations were associated with decreased implantation rate, but not other aspects of in vitro fertilization [52].

Tanrikut et al collected endometrial biopsies from 32 fertile and 33 infertile women to determine the role of endometrial concentrations of heavy metals on unexplained infertility. The group reported that cadmium was detected in over 90% of the women who experienced unexplained infertility, compared to 34% of fertile women. Additionally, lead was detected in 15% of infertile women versus only 3% of fertile women [53].

Tulic et al aimed to investigate the association between blood levels of trace elements and toxic metal concentrations and the outcome of in vitro fertilization. They reported that there was a significant correlation between the negative outcome of IVF with higher concentrations of lead and cadmium. Additionally, pregnant women had lower levels of manganese, arsenic, and lead. It should be noted that patients with a smoking history had significantly higher levels of lead and slightly higher levels of arsenic and mercury[54].

Zhang et al aimed to examine preconception serum concentrations of PFOA and PFCs in relation to gestational diabetes. The group reported that higher environmentally relevant concentrations of PFOA were significantly associated with an increased risk of gestational diabetes. [23].

Menopause (4):

Chen et al conducted a study using women who either did not live in cadmium-polluted areas to determine if there was an association between cadmium exposure and menarche. The group reported that women who lived in cadmium-polluted environments started menarche at a significantly younger age than women who lived in unpolluted environments. However, this geographic locale did not impact menopause [55].

Ding et al aimed to investigate associations between perfluoroalkyl substances and the incidence of natural menopause. The group reported that selected PFAS serum concentrations are associated with earlier natural menopause [56].

Wang et al investigated the association between urinary metal and mixture combinations and natural menopause. The group reported that arsenic, lead and metal mixtures are associated with earlier natural menopause [57].

Wang et al used a murine model to observe if exposure to MEHP affects ovarian antral follicles and identify potential mechanisms associated with this effect. The group reported that MEHP exposure increased reactive oxygen species which inhibits follicle growth in antral follicles [58].

Maternal health (43):

Ashley-Martin et al studied the association between arsenic and gestational diabetes using data from the maternal-infant research on environmental chemicals. The group reported that a metabolite of arsenic, dimethylarsenic acid, was associated with gestational diabetes [1].

Ashrap et al conducted a study using the Puerto Rico Test site for Exploring Contamination Threats cohort to observe the effects of metals and metalloids on birth outcomes. The group reported that metal was associated with a higher odds of preterm birth and shorter gestational age. To a smaller extent, manganese, zinc, mercury, and nickel were associated with similar outcomes [59].

Baker et al used data from the GESTation and the Environment (GESTE) prospective observational pregnancy cohort to determine if there is a relationship between prenatal exposure to methylparaben and adverse health outcomes. The group reported that the presence of methylparaben in meconium samples was associated with the onset of preterm birth, decreased gestational age, attention-deficit hyperactivity disorder, and more [60].

Bayat et al conducted a case-control study to determine the relationship between maternal blood lead levels and preeclampsia. The group reported a significant relationship between blood lead levels and preeclampsia [61].

Bloom et al conducted an observational study of southeastern women in the United States to determine racial differences in maternal phthalate exposure, fetal growth, and birth outcomes. The group reported that high levels of MEHP were associated with small gestational age in whites, but not blacks. However, higher levels of MiBP were associated with preterm birth in blacks, but not whites. Overall, higher levels of MEP were associated with low birth weight in males but not females, independent of race [62].

Bloom et al aimed to generate a hypothesis concerning associations between background exposure to heavy metals and pregnancy outcomes. The group reported that increases in blood cadmium levels are associated with decreases in clinical and biochemical pregnancies. Increases in blood mercury and lead were also associated with a decrease in clinical and biochemical pregnancies [63].

Cherry et al aimed to describe the epidemiological patterns of still birth and arsenic contamination of hand-pump wells in Bangladesh. The group reported that there was an increased risk of stillbirth associated with increasing arsenic contamination [64].

Chan et al reviewed the literature for studies that investigated the relationship between exposure to endocrine-disrupting chemicals during pregnancy and adverse maternal/child health outcomes. Specifically, the group investigated this relationship as it pertains to the use of personal care products. They reported that few studies investigated this link, but they found that black and Hispanic women had high levels of phthalates as phenols, whereas white women had high levels of benzophenone-3 [65].

Disha et al aimed to measure the blood lead levels in pregnant women and their association with pre-eclampsia. The group reported that higher blood lead levels are associated with an increased risk of preeclampsia [66].

El-Brady et al investigated the obstetric outcome among dental staff and oxidative stress induced by mercury exposure. The group reported that women who were exposed to mercury had higher incidences of spontaneous abortion and pre-eclampsia. Additionally, babies born to exposed women tended to be smaller for gestational age [67].

Elongi et al used a case-control design to observe if preeclampsia was associated with exposure to environmental metals within the Democratic Republic of Congo. The group found that women with preeclampsia have higher levels of several toxic metals (especially lead) than control women[68].

Ettinger et al conducted a study to investigate whether arsenic exposure is associated with impaired glucose tolerance during pregnancy. The group reported that women in the highest quartile of arsenic exposure have higher odds of impaired glucose tolerance tests compared to women in the lowest quartile of exposure [69].

Etzel et al investigated the relationship between prenatal exposure to triclosan exposure, birth anthropometry, and gestational duration. The group reported that maternal urinary triclosan concentrations were inversely associated with infants’ birth weight, length, head circumference and gestational age [70].

Erinc et al wrote a review article that presented epidemiological and mechanistic evidence for the link between PFAs and hypertensive disorders of pregnancy. The group also offered prevention efforts. Overall, they discussed that pregnant women may be vulnerable to PFAS exposure and policymakers should consider setting limits on exposure to PFAS [71].

Fei et al examined whether exposure to PFOA or PFOS decreases fecundity in humans. The group reported that a longer time to pregnancy was associated with higher maternal plasma levels of PFOA and PFOS [72].

Gokoel aimed to assess the influence of prenatal mercury exposure, perceived stress, and depression on adverse birth outcomes in Surinamese women within the Caribbean Consortium for Research in Environmental and Occupational Health prospective cohort. They reported associations between mercury exposure and preterm birth and perceived stress. However, depression was not associated with any birth outcomes [73].

Harris et al reported that environmental exposure to chemicals such as parathion, cadmium, and arsenic are associated with miscarriage in humans, mice, and rats. Specifically, exposure to environmental contaminants can influence the expression of genes involved in miscarriage. Exposure to such chemicals altered the expression of genes involved in pregnancy complications, such as vasculature development and inflammatory response [74].

Jia et al investigated the association between endocrine-disrupting heavy metals in maternal hair and the risk of gestational diabetes. The group reported that high maternal levels of tin and mercury were associated with the development of gestational diabetes [5].

Kile et al conducted a prospective cohort study of pregnant women to evaluate the causal relationship between prenatal exposure to arsenic and birthweight. The group reported that arsenic exposure during pregnancy was associated with lower birth weight. They also reported that this association is mediated through gestational age [75].

Kolusari et al conducted a study to observe the relationship between catalase activity, heavy metal, vitamin concentrations, and preeclampsia. The group reported that women with preeclampsia had lower levels of catalase, vitamin A, D, E, and cobalt. Women with preeclampsia also had higher levels of copper, iron, and cadmium [76].

Laine et al conducted a study that aimed to identify the association between heavy metals in the placenta and the odds of preeclampsia in a nested case-control design. The group reported that increased levels of placental cadmium were associated with an increased risk of preeclampsia. Additionally, lower levels of placental zinc were associated with preeclampsia [77].

Lauritzen et al aimed to investigate the relationship between prenatal exposure to persistent organic pollutants and offspring weight gain. The group reported that maternal serum PFAS concentrations were positively associated with child overweight/obesity trends at the 5-year follow-up [78].

Liew et al sought to examine the relationship between PFAS exposures and the risk of miscarriage in humans. The group reported that maternal exposure to high levels of PFOA, PFHpS and PFAS mixtures were associated with the risk of miscarriage [79].

Mullin et al analyzed mother-infant dyads within the PROGRESS cohort to investigate the association of blood arsenic levels with birth weight-for-gestational age. The group reported that higher maternal blood arsenic levels at delivery were associated with higher odds of small for gestational age and large-for-gestational-age among infants [80].

Ng et al interviewed women to observe the relationship between toluene exposure and the rate of spontaneous abortion. The group reported that exposure to toluene was associated with an increased risk of fetal loss in a majority of women who did not smoke or drink [81].

Nyanza et al conducted a longitudinal prospective study to examine the association between prenatal and maternal exposure to arsenic and mercury exposure and birth outcomes in mining communities. The group reported that women living in mining communities had higher blood levels of mercury than women who did not live in mining communities. Additionally, high levels of arsenic were associated with spontaneous abortion, stillbirth, and preterm birth, whereas mercury exposure was associated with stillbirth solely [82].

Park et al measured the paraben concentration in the breastmilk of lactating mothers to determine the baseline concentration of parabens in breastmilk and identify possible sources of exposure. The group reported that ethyl paraben was detected at the highest levels in breastmilk samples, followed by other
major parabens. The authors also noted that increased levels of parabens in breastmilk were associated with pre-pregnancy BMI, use of skincare products, use of cosmetics, canned beverage use, and milk consumption [83].

Peng et al conducted a retrospective case-control nested study within a cohort of pregnant women to investigate the association between heavy metal exposure and gestational diabetes. The group reported that higher concentrations of arsenic, mercury, chromium, and cadmium were associated with gestational diabetes in a dose-dependent manner [9].

Quinn et al aimed to determine the potential estrogenic, androgenic and progestogenic activity of two cyclic siloxanes. The group reported that D4 exhibited a low affinity for ER-alpha in vitro and a weak estrogenic response in vivo [84].

Rahman et al conducted a population-based prospective cohort study to assess the association between arsenic exposure and adverse pregnancy outcomes. They reported that spontaneous abortion and infant mortality was associated with arsenic exposure as well [85].

Santos et al investigated whether exposure to benzene and toluene among pregnant women contributes to preterm delivery. The group found that maternal exposure to benzene and toluene had an acute effect on preterm delivery [86].

Sharpio et al conducted a study using data from the maternal-infant research on environmental chemicals cohort to determine the associations between plasticizers/metals and impaired glucose
tolerance/gestational diabetes. Their findings supported the role of maternal arsenic exposure in the

pollutant assessment of preconception persistent endocrine disrupting chemicals and incident pregnancy
Smarr et al followed a prospective cohort using 501 couples to determine if there was an association
between exposure to a mixture of endocrine-disrupting chemicals and human gonadotrophin chorionic
pregnancy loss. The group reported that preconception exposure to polybrominated ether 28 and
cadmium in females was positively associated with human gonadotrophin pregnancy loss [87].

Sohel et al conducted a study using pregnant women to identify spatial and spatiotemporal clustering of
fetal loss and infant death and clusters of arsenic concentrations in tube-well water [88]. The group
reported that geographical variation in tube-well water arsenic contamination is associated with higher
fetal loss and infant death [88].

Environmental health perspectives, 101 Suppl 2(Suppl 2), 27–31. [https://doi.org/10.1289/ehp.93101s227]
Tabacova et al discussed how certain maternal environmental exposures can negatively impact pregnancy
outcomes. Women who were exposed to lead or aromatic hydrocarbons were at risk of poor pregnancy
outcomes. These outcomes included spontaneous abortion, anemia, and toxemia [89].

risk of small-for-gestational age birth in a Canadian birth cohort: The MIREC study. Environmental
research, 140, 430–439. [https://doi.org/10.1016/j.envres.2015.04.018]
Thomas et al conducted a study to examine the relationship between exposure to heavy metals during
pregnancy and risk of small for gestational age. The group reported that there was no association between
blood levels of lead, cadmium, and arsenic. However, increased blood mercury levels were associated
with an increased risk of small for gestational age [90].

Tsujii, M., Shibata, E., Askew, D. J., Morokuma, S., Aiko, Y., Senju, A., Araki, S., Sanefuji, M., Ishihara, Y.,
Tanaka, R., Kusuhara, K., Kawamoto, T., & Japan Environment and Children’s Study Group (2019).
Associations between metal concentrations in whole blood and placenta previa and placenta accreta: the
Japan Environment and Children’s Study (JECS). Environmental health and preventive medicine,
Tsujii et al administered a questionnaire to women with singleton pregnancies to determine if metal
exposure is associated with placenta previa and placenta accrete. The group divided the subjects into 4
quartiles of exposure and found that Q4 cadmium was associated with placenta previa, but Q2 lead was
associated with placenta previa [91].

Velez et al observed if maternal exposure to PFOS, PFOA, and PFHxS affected female fecundity using the maternal-infant research on environmental chemicals cohort. The group reported that their data supported evidence that suggests exposure to PFOA and PFHxS may reduce fecundability [92].

Vigeh et al assessed the effects of environmental exposures to trace metals on the incidence of preeclampsia. The group reported that environmental exposure to lead, antimony, and manganese may increase the risk of preeclampsia in women without occupational exposure. Additionally, metal concentration in umbilical cord blood may be a sensitive indicator for maternal toxicity, as compared to whole blood samples [93].

Wei et al investigated the potential impact of exposure to triclosan and triclocarban on fetal abnormalities in Beijing. The group reported that significantly increased levels of these chemicals in maternal sera were associated with abnormal birth and fetal malformations [94].

Wilkstrom et al used the Swedish SELMA pregnancy cohort to study if levels of PFAs in early pregnancy are associated with spontaneous abortion/miscarriage in the first trimester. The group found that a doubling of PFOA exposure was associated with miscarriage. A similar but not significant trend was observed following exposure to PFNA as well [95].

Xu et al conducted a case-control study aimed to assess whether higher plasma formaldehyde levels existed in women diagnosed with miscarriage and if this contributed to a higher risk of miscarriage among Chinese women [96]. The group found that plasma levels of formaldehyde were significantly higher in women who were diagnosed with miscarriage than those who delivered at term. Additionally, higher levels of formaldehyde were an independent risk factor for miscarriage, with higher levels being associated with a higher risk [96].

Xu et al studied the effects of in utero exposure to cadmium, bisphenol A and polychlorinated biphenyls on master regulatory genes using a cohort of pregnant women. The group reported that exposure to those chemicals may be associated with higher KISS1 gene expression [97].

Obesity (8):

Karakis, I., Baumfeld, Y., Landau, D., Gat, R., Shemesh, N., Yitshak-Sade, M., Tirosh, O., Sarov, B., & Novack, L. (2021). Exposure to metals and morbidity at eight years follow-up in women of childbearing age. Scientific reports, 11(1), 11429. https://doi.org/10.1038/s41598-021-90904-1

Karakis et al conducted an exploratory study aimed to investigate the link between toxic metal content in women’s urine and their morbidity. The group reported that increased levels of cadmium were linked to cancer, but increased levels of lead were associated with cardiovascular outcomes and obesity [98].

Kim et al searched the literature for in vivo and in vitro studies that investigated the relationship between phthalate exposure and obesity. Within this review, they discussed possible biological mechanisms by which phthalate exposure could lead to obesity in humans and animals [99].

Lauritzen et al aimed to investigate the relationship between prenatal exposure to persistent organic pollutants and offspring weight gain. The group reported that maternal serum PFAS concentrations were positively associated with child overweight/obesity trends at the 5-year follow-up [78].

Lee examined the association of blood mercury levels with metabolic and weight phenotypes. Lee reported that blood mercury concentration was associated with both metabolic syndrome and obesity. This association occurred in a dose-dependent manner [100].

Shin et al used a cell-based study to demonstrate that benzophenone-3 and benzophenone-8 are obesogenic environmental chemicals. This means that these chemicals may increase the risk of obesity. These chemicals are commonly used in products such as sunscreen because they can filter ultraviolet rays of light [101].
Tian et al conducted a study using Chinese women to identify a relationship between obesity and serum isomers of PFOS, PFOA, and other PFASs. The group reported that PFASs and their isomers are positively associated with being overweight or having an increased waist circumference in women primarily [102].

Uche and King examined the association between triclocarban and obesity among US adults. The group reported that triclocarban was associated with obesity. The risk of obesity increased with older age. The group also reported racial differences in this association [103].

Xing et al measured the urinary cadmium concentration of pregnant Chinese women to investigate whether cadmium exposure during pregnancy was associated with gestational diabetes mellitus. The group reported that a 3-fold increase in cadmium levels was associated with an increased risk of gestational diabetes. Risk factors such as obesity or being overweight further increased the risk of gestational diabetes associated with exposure to cadmium [20].

Cancer (11):
Cramer et al investigated the association between ovarian cancer and the genital use of talc. The group reported that the risk for epithelial ovarian cancer from genital talc use varies by histologic subtype, menopausal status, hormone therapy use, weight, and smoking history [104].

Duong et al systematically evaluated evidence of an association between formaldehyde exposure and adverse reproductive and developmental effects in human populations and animal studies. The group discussed animal and human studies that supported this association and offered potential mechanisms [105].

Gabriel et al investigated the relationship between douching and inflammatory genital conditions, in combination with genital talc use and epithelial ovarian cancer. The group reported that douching is not an independent risk factor for ovarian cancer; however, the combination of talc use and store-bought douches may increase the risk for epithelial ovarian cancer [106].

Gates et al analyzed interactions between talc use and genes in detoxification pathways. The group reported that women with certain genetic variants may have a higher risk of ovarian cancer associated with genital use of talc. Risk of disease varied by differences in phenotype between GSTT1 and GSTM1 [107].

Gong et al performed a transcriptome-wide association study and a gene enrichment analysis to identify correlations between chemical exposure and altered gene expression using a United Kingdom biobank and comparative toxicogenonomic database. They found that 5 chemicals (NSC668394, glafenine, methyl nitritonitrosoguanidine, fenofibrate, and methylparaben) were associated with an increased incidence of both breast and cervical cancer [108].

Gonzalez et al used data from the Sister cohort to identify an association between vaginal douching and ovarian cancer. The group reported that douching, but not talc use was associated with an increased risk of ovarian cancer [109].

Harlow et al conducted a case-control study to determine the association between ovarian tumors and the use of hygienic powders in Washington State. The group reported that women who use deodorized powders alone or in combination with talc-containing powders had 2.8 times the risk of ovarian tumors [110].

Karakis et al conducted an exploratory study aimed to investigate the link between toxic metal content in women’s urine and their morbidity. The group reported that increased levels of cadmium were linked to cancer, but increased levels of lead were associated with cardiovascular outcomes and obesity [98].

Merritt et al evaluated the potential role of chronic local ovarian inflammation in the development of the major subtypes of epithelial ovarian cancer. The group confirmed that talc use was associated with ovarian cancer, but regular use of aspirin was inversely associated with the risk of low malignant potential mucinous ovarian tumors [111].

Mills et al performed a population-based epidemiologic case-control study to determine if perineal talc use was associated with ovarian cancer. The group found that talc use was commonly used in women with serious invasive tumors [112].

Terry et al estimated the association between self-reported genital powder use and epithelial ovarian cancer risk in eight population-based case-control studies. The group reported that genital powder is a modifiable exposure associated with small-to-moderate increases in the risk of most histologic subtypes of epithelial ovarian cancer [113].

PCOS (1):

Vagi et al conducted a case-control pilot study to determine whether women with PCOS have higher concentrations of specific environmental contaminants. The group reported that women with PCOS had higher serum concentrations of two PFCs, PFOA and PFOS. However, these women had lower urinary concentrations of mBP and mBzP [114].

PTB (7):

Ashrap et al conducted a study using the Puerto Rico Test site for Exploring Contamination Threats cohort to observe the effects of metals and metalloids on birth outcomes. The group reported that lead exposure was associated with a higher odd of preterm birth and shorter gestational age. To a smaller extent, manganese, zinc, mercury, and nickel were associated with similar outcomes [59].

Baker et al used data from the GESTation and the Environment (GESTE) prospective observational pregnancy cohort to determine if there is a relationship between prenatal exposure to methylparaben and adverse health outcomes. The group reported that the presence of methylparaben in meconium samples was associated with the onset of preterm birth, decreased gestational age, attention-deficit hyperactivity disorder, and more [60].

Bloom et al conducted an observational study of southeastern women in the United States to determine racial differences in maternal phthalate exposure, fetal growth, and birth outcomes. The group reported that high levels of MEHP were associated with small gestational age in whites, but not blacks. However, higher levels of MiBP were associated with preterm birth in blacks, but not whites. Overall, higher levels of MEP were associated with low birth weight in males but not females, independent of race [62].

Gokoel aimed to assess the influence of prenatal mercury exposure, perceived stress, and depression on adverse birth outcomes in Surinamese women within the Caribbean Consortium for Research in Environmental and Occupational Health prospective cohort. They reported associations between mercury exposure and preterm birth and perceived stress. However, depression was not associated with any birth outcomes [73].

Nyanza et al conducted a longitudinal prospective study to examine the association between prenatal and maternal exposure to arsenic/mercury exposure and birth outcomes in mining communities. The group reported that women living in mining communities had higher blood levels of mercury than women who did not live in mining communities. Additionally, high levels of arsenic were associated with spontaneous abortion, stillbirth, and preterm birth, whereas mercury exposure was associated with stillbirth solely [82].

Rowland et al used a questionnaire to determine if exposure to ethylene oxide was associated with poor pregnancy outcomes. The group reported that exposure to this chemical may be associated with spontaneous abortion and preterm birth [115].

Santos et al investigated whether exposure to benzene and toluene among pregnant women contributes to preterm delivery. The group found that maternal exposure to benzene and toluene had an acute effect on preterm delivery [86].

Fibroids (5):

Jackson et al investigated the association between heavy metals and the risk of endometriosis and uterine myomas via a cross-sectional study using data from the National Health and Nutrition Examination Survey. The group reported that a dose-dependent response was associated with exposure to cadmium and the observation of endometriosis [41]

Johnstone et al used a cohort of 473 women to identify an association between uterine fibroids and blood/urinary levels of heavy metals and trace elements. The odds of fibroid diagnosis were associated with higher levels of cadmium in whole blood, but not urinary samples. Overall, increased exposure to trace elements may promote fibroid growth/diagnosis [116]

Shen et al explored the effect of phenolic environmental estrogens on women with uterine leiomyoma using blood and urine sample from patients at Zhongda Hospital. The group reported that octylphenol concentrations in urine and blood were significantly higher in women with uterine leiomyomas. However, there were no significant differences between the levels of bisphenol A or nonylphenol [117].

Shen et al investigated the effect of phenolic environmental estrogens on uterine leiomyomas from a perspective using the plasma samples of women living in China. The group reported that exposure to phenolic environmental estrogens (BPA, OP, and NP) in humans were related to leiomyoma tumorigenesis [118].

Ye et al conducted a cross-sectional study using premenopausal women in Seoul to demonstrate the relationship between blood heavy metal concentrations and uterine fibroids. The group reported that there was no connection between the two factors. However, the odds of women having uterine fibroids increased with higher exposure to 3 metals [119].

Allergies (2):

Deleo aimed to identify differences in reactive dermatitis between races using the North American contact dermatitis group patch testing results. The group reported that blacks reacted more frequently to phenylenediamine compared to white [120].

Thurmam et al used members of the German mother-child study LINA, to determine if prenatal exposure to parabens was associated with an increased risk of atopic dermatitis in children. The group reported that prenatal exposure to ethylparaben and n-butylparaben increased children’s risk of developing persistent atopic dermatitis at a very early age [121].
Tier 2: Emerging Chemicals

Chronic Aquatic (1):

Kunz et al investigated the effects of UV filters on hormonal activities in human receptors and predict the effects that these chemicals have on hormonal activity in fish, which are exposed because these chemicals are found in water. The group reported estrogenic activities of UV filters in fish using in vitro and in vivo analyses [28].

Diabetes (3):

Barseghian et al analyzed the impact of ethanolamine on insulin secretion using the pancreas of rats. The group reported that ethanolamine inhibited the release of insulin in a dose-dependent manner. However, this effect was blunted in the presence of phentolamine [122].

Beeharry et al examined the protective effects of linoleic acid and antioxidants against DNA damage and apoptosis following exposure to palmitic acids using an insulin-secreting cell line. The group reported that palmitic acid damaged the DNA of these cells, but linoleic acid had a protective effect on these outcomes by reducing oxidative stress, unlike mutagenic metabolites of palmitic acid [123].

Xiao et al aimed to investigate the relationship between fatty acid exposure and lipotoxicity. The group reported that exposure to INS-1 cells to palmitate was associated with chronic lipotoxicity. This was also associated with a reduction in glucose and fatty acid stimulated insulin secretion and reduced insulin responsiveness to glucose and fatty acids. Exposure to palmitate also increased carnitine palmitotransferase I gene expression; suggesting that genes involved in insulin signal pathways may play an important role in the pathogenesis of lipotoxicity in beta cells [124].

Endocrine (1):

Akahori et al sought to clarify the relationship between the *in vitro* ER binding assay and *in vivo* uterotrophic assay to detect ER-mediated activities. Assay results were compared for 65 chemicals. The group identified 21 of these chemicals as exhibiting both estrogenic and anti-estrogenic responses, including 4-tert-Butylpyrocatechol, based on results of both the *in vitro* ER binding assay and *in vivo* uterotrophic assay. [125]

Azevedo-Martins et al assessed the toxicity of 7 fatty acids, including palmitic acid, stearic acid, oleic acid, linoleic acid, γ-linoleic acid, arachidonic acid, and eicosapentaenoic acid, to insulin-producing RINm5F cells by measuring loss of plasma membrane integrity and increase in DNA fragmentation. The group found that palmitic, linoleic, γ-linoleic, oleic, stearic, and eicosapentaenoic acid caused DNA fragmentation and linoleic and γ-linoleic acid caused loss of membrane activity. [126]

Benísek et al investigated the direct activation of retinoic acid receptors and modulation of response induced by natural ligand all-trans retinoic acid (ATRA) by 26 polycyclic aromatic hydrocarbons (PAHs) and their N-heterocyclic analogs (N-PAHs). The group found that none of the compounds alone activated retinoic acid receptors. However, many of the compounds modulated ATRA-mediated activity both after 6 hours and 24 hours of exposure. After 6 hours, the majority of compounds downregulated ATRA-mediated activity; after 24 hours, the majority of compounds upregulated the effects of ATRA. [127]

Blair et al determined the estrogen receptor affinity for a group of 188 structurally diverse chemicals using an *in vivo* assay with Sprague-Dawley rat uteri. The group found that of the 188 chemicals tested, 100 were estrogen receptor binders, while the remaining 88 were non-binders. For chemicals found to be estrogen receptor binders, relative binding affinity values were obtained through further testing of a wide range of concentrations to characterize the binding curves of the chemicals. [128]

Eason et al performed two experiments in which they exposed fundic rat mucosa to 6 mg/kg pentagastrin for 5 weeks and 1,000 mg/kg sodium bicarbonate for 13 weeks, respectively. The group found that sodium bicarbonate induced a significant increase in plasma gastrin concentration and that both pentagastrin and sodium bicarbonate caused neuroendocrine cell hypertrophy and hyperplasia. [129]

Goodfriend et al examined the effects of fatty acids on angiotensin receptors in adrenal glomerulosa cells. The group found that oleic and arachidonic acids were specific inhibitors of the AT1 subtype of angiotensin receptor, and that they showed no effect on the AT2 subtype of angiotensin receptor. They also found that decanoic acid is a weak inhibitor of the AT2 subtype of angiotensin receptor. [130]

Hashem et al investigated the effects of oral administration of food dyes Amaranth, Sunset Yellow, and Curcumin in rats. The group found that these food dyes had a variety of significant effects on measurements including body weight, relative body weight, total and differential leukocyte count, mononuclear cell count, delayed hypersensitivity, total protein, and serum fractions. [131]

Kassotis et al measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors. The group found that of the 24 chemicals tested, 23 showed potential to activate or inhibit estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors. [132]

Mantovani et al investigated the effects of prenatal exposure to cinnamic aldehyde by gavage using Sprague-Dawley rats and their offspring. The group reported that exposure to this chemical increased the risk of poor cranial ossification while reducing the risk of ossification of the tympanic bulla. Additionally, this exposure led to increased incidences of dilated pelvis, dilated ureters and abnormal streanbrae per fetus [133].

Mineo et al examined the effects of benzoic acid and its analogues on insulin and glucagon secretion in sheep. The group found that when administered intravenously, benzoic acid significantly increased plasma insulin and glucagon concentrations in a dose-dependent manner. [134]

Mori et al studied the interactions of 6 polycyclic musk fragrance compounds with human estrogen receptor α (hERα), human androgen receptor(hAR), and human thyroid receptor β (hTRβ) using an in vitro
reporter gene assay with Chinese hamster ovary cells. The group found that all of the compounds tested were agonists toward hERα, while no agonistic activity was observed for hAR and hTRβ. Several compounds showed antagonistic activity toward hAR, while no antagonistic activity was observed for hERα and hTRβ. [135]

Nakama et al investigated the estrogenicity of 20 organic biocides using an estrogen receptor binding assay and a yeast estrogen screen assay. The group found that 12 of the biocides exhibited estrogenicity in the estrogen receptor binding assay. One biocide exhibited estrogenicity in both the estrogen receptor binding assay and the yeast estrogen screen assay. [136]

Rosenberg et al utilized a tissue culture system based on breast carcinoma cell lines to examine the potential for steroid hormone agonist/antagonist activity caused by a large number of naturally occurring compounds and beverages. The group found that 3 of the tested substances exhibited weak progestational activity, while 11 of the tested substances exhibited weak antiandrogenic/antiprogestational activity. [137]

Schultz et al assessed estrogenicity of 120 aromatic compounds using the *Saccharomyces cerevisiae*-based Lac-Z reporter assay. Gene activation was compared to 17β-estradiol. The group found a mix of compounds that induced gene activation, which were categorized into strong, moderate, weak, and detectable, and compounds that were inactive. [138]

Tollefsen et al investigated activation of estrogen receptor-mediated production of vitellogenin in a primary culture of rainbow trout to assess estrogenicity of a group of alkylphenol and alkylated non-phenolic compounds. The group found that most alkylphenol compounds were estrogenic, although much less so than 17β-estradiol. Most alkylated non-phenolic compounds had reduced estrogenic activity, but several were estrogenic. Several compounds were not identified as estrogenic when exposed alone but were found to be estrogenic when co-exposed with the natural estrogen 17β-estradiol. [139]

Warnotte et al examined the effects of 3 saturated and 3 unsaturated fatty acids on insulin secretion using isolated mouse islets. The group found that palmitate and stearate increased basal insulin secretion, and all compounds tested potentiated glucose-induced insulin secretion. [140]

Zhang et al tested the estrogenicity of phenyl salicylate (PhS), benzyl salicylate (BzS), phenethyl salicylate (PES), ethyl salicylate (ES) and methyl salicylate (MS), types of salicylate esters, using an invitro human estrogen receptor alpha coactivator recruiting assay and in vivo immature rodent uerotrophic bioassays. The group reported that exposure to BzS and PES increased uterine weight in mice. They also reported that BzS exhibited very strong estrogenic activity when compared to BPA, a known estrogenic compound [31].

Obesity (1):

Choi et al conducted a cross-sectional study using logistic regression to investigate the association between select endocrine disrupting chemicals and obesity in young girls. The group reported that the concentration of PA in the urine and serum, as well as the concentration of MEP and DBP in the serum was significantly different in obese girls compared to the control group. Additionally, the group found that the concentration of serum DHEA was also statistically different between the control and obese group [141].

Bibliography

